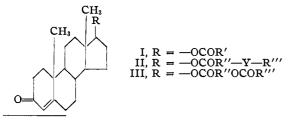
been obtained. The isolation and properties of this alkaloid have been studied. On hydrolysis, it yields a base, kopsidine, $C_{20}H_{24}N_2O_8$, m. p. 142°;

and on hydrogenation, a dihydro derivative, m. p. 218° (dec.).

PASADENA, CALIFORNIA

RECEIVED APRIL 18, 1949

[CONTRIBUTION FROM THE STERLING-WINTHROP RESEARCH INSTITUTE]


A New Series of Testosterone Esters

BY ARAM MOORADIAN, C. J. CAVALLITO, A. J. BERGMAN,¹ E. J. LAWSON AND C. M. SUTER

The literature is replete with attempts by workers in the field to prepare esters of testosterone which would show both more intensive and more prolonged androgenic action than testosterone itself. It was shown in early studies² that the lower aliphatic acid esters are most effective; as one increases the length of the carbon chain in the fatty acid residue, the effect becomes more prolonged but the intensity decreases rapidly. Ruzicka,³ by his preparation and testing of the acetate and benzoate esters, initiated work which resulted in the general adoption of testosterone propionate as an activated form of testosterone. These workers⁴ prepared a long series of aliphatic acid esters. Miescher's group⁵ made a study of halogenated, aminated, and unsaturated aliphatic esters as well as carbonate esters. This latter group of workers⁶ also studied the enol diesters of testosterone. Rabold and Dietrich⁷ have made a study of the glucoside and tetraacetyl glucoside. The patent literature⁸ describes a sulfonic acid and a phosphoric acid ester.

However, since it was felt that the field had not been combed thoroughly enough in view.of the importance of the problem, there has been prepared a new series of esters several of which show activities surpassing testosterone propionate in rat tests where the weight increase of the seminal vesicles and the prostate was studied. A preliminary summary of the results obtained is shown in Table III. More complete biological results will be published⁹ at a later date.

Esters of the general types

(1) Present address, Quaker Oats Co., Rockford, Illinois.

- (3) Ruzicka and Kägi, Helv. Chim. Acta, 19, 842 (1936).
- (4) Ruzicka and Wettstein, Helv. Chim. Acta, 19, 1141 (1936).
- (5) Miescher, et al., Biochem. Z., 294, 39 (1937).
- (6) Miescher, Fischer and Tschopp, Biochem. Z., 300, 14 (1938).
- (7) Rabold and Dietrich, Z. physiol. Chem., 259, 251 (1939).
- (8) Hartmann, Wettstein, U. S. Patent 2,182,920.
- (9) By A. J. Bergman.

have been prepared (Table III) where R' is of the carbocyclic or heterocyclic type, R'' and R''' are various aliphatic or aromatic radicals and Y is oxygen or sulfur. Types I and III have been prepared from the acid chlorides and type II from the acid chlorides.

The acids shown in Table I were prepared by three methods. Method A involves the reaction of the appropriate sodium alkoxide or mercaptide with a halogenated acid. The second method, B, was used only to make ethyl or methylmercapto acids by the alkylation of the appropriate mercapto acid with ethyl or methyl sulfates. Method C involves hydrolysis of the corresponding nitrile.

In preparing the acid chlorides shown in Table II, both thionyl chloride (D) and phosphorus trichloride (E) were used. Phosphorus trichloride possesses the advantage that a colorless product almost always results. This is of decided advantage in the preparation of a color-free ester. Furthermore, in some instances in which thionyl chloride results in tar formation, phosphorus trichloride gives a fair yield of product. From the viewpoint of yield, however, thionyl chloride is usually to be preferred.

Some of the acids and acid chlorides described are old compounds but are included where the characterization is somewhat more complete than that described in the literature. Those acids which were obviously used but not described may be found elsewhere in the literature.

Experimental

n-Butylmercaptoacetic Acid (Method A).—To 21.6 g. of *n*-butylmercaptan (0.24 mole) dissolved in 200 cc. of 18% sodium hydroxide solution was added 20.8 g. of chloroacetic acid (0.22 mole) dissolved in 100 cc. of 18% sodium hydroxide. The mixed solutions were heated for two hours on a steam-bath. The solution was then cooled and acidified and the product extracted with ether and distilled. Distillation gave 29 g. of product, b. p., 136-137° at 10 mm.

2-Ethylmercaptopropanoic Acid (Method B).—A solution of 43.5 g. (0.41 mole) of 2-mercaptopropanoic acid was prepared by dissolving it in a solution containing 36 g. (0.9 mole) of sodium hydroxide in 45 cc. of water. While this solution was being stirred and heated on a steam-bath 63.2 g. (0.41 mole) of diethyl sulfate was added dropwise. Heating was continued until a single phase resulted. The solution was cooled, acidified with dilute sulfuric acid, and extracted with ether three times. The ether was evaporated and the residue distilled, yielding 24.5 g. of product, b. p. 111-113° at 8 mm. 4-Methylmercaptobutanoic Acid (Method C).—Eight-

4-Methylmercaptobutanoic Acid (Method C).—Eighteen grams of methyl mercaptan (0.37 mole) was dissolved

⁽²⁾ Miescher, Wettstein and Tschopp, *Biochem. J.*, **30**, 1970 (1936).

m . _ _ T

TABLE 1												
Acids												
	°C. Mm.		n ²⁵ D	Vield, %	Method	Molecular formula	Analys es, Caled.	% sulfur Found				
n-C3HrSCH2COOH	126 - 128	11	1.4805	83	Α	$C_{\delta}H_{10}O_{2}S$	23.89	23.78				
i-C:H,SCH2COOH	118-119	10	1.4788	65	Α	$C_{\delta}H_{10}O_{2}S$	23.89	24.19				
				39	в							
n-C,H,SCH2COOH	136 - 137	10	1.4780	89	Α	$C_6H_{12}O_2S$	21.63	21.13,21.18				
CH3SCH2CH2COOH	119-123	12	1.4884	88	В	$C_4H_8O_2S$	26.68	26.86				
CH3CH(SCH3)COOH	105-106	8	1.4815	27	в	$C_4H_8O_2S$	26.68	26.94				
CH3CH(SC2H5)COOH	111-113	8	1.4764	45	в	$C_5H_{10}O_2S$	23.89	24.25				
CH3SCH2CH2CH2COOH	130	9	1,4823	65^{a}	С	$C_5H_{10}O_2S$	23.89	23.44				
CH ₃ CH ₂ CH(SCH ₃)COOH	115-116	8	1.4788	71	Α	$C_5H_{10}O_2S$	23.89	23.60				
n-C ₃ H ₇ SCH ₂ CH ₂ CH ₂ COOH	168 - 170	23	1.4778	78ª	С	$C_7H_{14}O_2S$	19.76	19.38				
i-C ₈ H ₇ OCH ₂ COOH	96-98	9	1.4190	80	Α	$C_{\delta}H_{10}O_{3}$	C, 50.83	50.99				
· ·							H, 8.53	8.60				

^a This yield is an over-all yield for condensation of a sodium mercaptide with a halogenated nitrile and hydrolysis of the resulting product.

TABLE II

ACID CHLORIDES

	D		Chlorin- ation	Yield,	Molecular	A	-1-1	
	°C. ^{B. 1}	p. Mm.	n ²⁵ D	agent		formula	Analyses, % Calcd	Found
CH ₃ SCH ₂ COC1	49 - 50	14	1.4967	\mathbf{E}	45	C ₈ H ₅ ClOS	28.46	28. 2 8
C ₂ H ₅ SCH ₂ COCl	61 - 64	14	1.4888	D	75	C4H7ClOS	25.58	25.57
n-C ₈ H ₇ SCH ₂ COC1	63 - 64	8	1.4846	D	92	C₅H ₉ ClOS	23.23	23.10
é-C₃H7SCH2COCl	57 - 58	8	1.4820	D	99	C ₆ H ₉ ClOS	23.23	23.55
n-C4H9SCH2COC1	83-84	8	1.4828	D	90	$C_6H_{11}ClOS$	21.31	21.58
C ₆ H ₅ SCH ₂ COCl	117 - 119	6	1.5806	D	93	C ₈ H ₇ ClOS	18.99	18.80
C₅H₅CH₂SCH₂COCl	130	5.5	1.5682	D	67	C ₉ H ₉ ClOS	17.67	17.51
CH₃SCH₂CH₂COCl	96–97	45	1.4941	\mathbf{E}	37	C4H7ClOS	25.58	25.60
CH ₃ CH(SCH ₃)COCl	77–78	45	1.4873	\mathbf{E}	52	C ₄ H ₇ ClOS	25.58	25.20
CH ₃ CH(SC ₂ H ₅)COC1	56 - 57	8	1.4805	\mathbf{E}	64	C₅H₀C1OS	23.23	23.35
CH3SCH2CH2CH2COCl	98-100	20	1.4898	\mathbf{E}^{a}	80	C ₃ H ₉ ClOS	23.23	22.98
CH ₃ CH ₂ CH(SCH ₃)COCl	58 - 59	8	1.4835	\mathbf{E}	83	C ₅ H ₉ ClOS	23.23	23.06
$n-C_{3}H_{7}SCH_{2}CH_{2}CH_{2}COC1$	106 - 108	9	1.4835	\mathbf{E}	79	C7H13C1OS	19.62	19.45
<i>i</i> -C ₄ H ₇ OCH ₂ COCl	139 - 141	760	1.4188	\mathbf{E}	92	$C_5H_9ClO_2$	26.00	25.70
CH ₈ OCH ₂ CH ₂ COCl	137 - 138	760	1.4260	\mathbf{E}	70	$C_4H_7ClO_2$	28.93	29.40
C ₂ H ₅ OCH ₂ CH ₂ COCl	150 - 151	760	• • • •	\mathbf{E}	72	$C_{5}H_{9}ClO_{2}$	26.00	26.17
CH2CH2CH2CHCOCl ^b	80-81	30	1.4592	Е	7 0	$C_{5}H_{7}ClO_{2}$	26.33	26.35
C ₂ H ₅ COOCH ₂ COCl	58	10	1.4265		••	C ₅ H ₇ ClO ₃	22.64	22.54
(CH ₃ SCH ₂ CO) ₂ O	111 - 112	0.25	1.5162		62	$C_6H_{10}O_3S_2$	C, 37.09	37.12
							H, 5.18	5.32
$(C_2H_5SCH_2CO)_2O$	94	0.07	1.5030	• •	60	$C_8H_{14}O_3S_2$	S, 28.77	28.98
							C, 43.36	43.52
							H, 6.33	6.61

^a Using thionyl chloride, only tar results. ^b Decomposes violently on standing at room temperature for some time.

in 125 cc. of 35% sodium hydroxide solution and 125 g. of crushed ice. To this was added 25.8 g. (0.25 mole) of 4-chlorobutanenitrile in 100 cc. of 95% ethanol. The solu-tion was refluxed for two and one-half hours. After diluting the reaction mixture with water, it was extracted with ether to remove unhydrolyzed nitrile. The alkaline soluthe two is then acidified with hydrochloric acid and again extracted with ether. There resulted 18.6 g. of product, b. p. 129-130° at 9 mm. *n*-ButyImercaptoacetyI Chloride (Method D).—A mix-ture of 23.8 g. (0.16 metho) of *n* butyImercaptoacetic acid

ture of 23.8 g. (0.16 mole) of *n*-butylmercaptoacetic acid and 29 cc. of thionyl chloride was heated gently on a steambath until evolution of hydrogen chloride ceased. The residue was distilled to give 24.2 g. of product, b. p., 83-84° at 8 mm.

2-Ethylmercaptopropanol Chloride (Method E).—A mix-ture of 21.3 g. (0.16 mole) of 2-ethylmercaptopropanoic acid and 8.8 g. (0.064 mole) of phosphorus trichloride was

allowed to stand overnight and then heated on a steam-

anowed to stand overnight and then heated on a steam-bath for one hour. The product was decanted from the sirupy phosphoric acids. Distillation gave 15.4 g. of product, b. p. 56-57°, at 8 mm. Ethylmercaptoacetic Anhydride.—A solution of 370 g. (3.1 mole) of ethylmercaptoacetic acid in 1100 g. of acetic anhydride was refluxed for six hours and then frac-tionally distilled. The product was collected at 100-103° at 0.1 mm, yield 166 g. at 0.1 mm., yield 166 g.

Testosterone n-Butoxyacetate.—Six-tenths gram of testosterone was dissolved in 25 cc. of dry ether with 4 cc. of dry pyridine. To this was added 1 g. of *n*-butoxyacetyl chloride in 10 cc. of dry ether. A solid immediately pre-cipitated. The suspension was refluxed for one-half hour and poured into water. The ether extract was washed with dilute sodium carbonate solution, dilute sulfuric acid and water. The ether was evaporated and the residue taken up in Skellysolve A containing about 20% of ether.

TABLE III

Testosterone $Esters^d$													
R	М. р., °С.	Activity ^a	Molar extinc- tion coef. X 10 ³	Position of max. ^b λ in mμ	[a]Db at	X, °C.		bon Found		rogen	Sul Calcd.		Molecular formula
CH2CH2COO-	120-121	100	16.9	241	88.3	25	76.67	76.88	9.37	9.15			C22H22O3
CH30CH2COO-	110°	97	16.8	240-241	84.6	27	73.33	73.01	8.96	8.96			C22H32O4
C2H5OCH2COO-	122.5 - 124	$121 \times 7*$	17.1	240-241	77.9	25	73.76	73.96	9.15	9.16			C23H34O4
n-CaH7OCH2COO-	88-89	103	17.0	240	75.9	29	74.20	74.33	9.35	9.23			C24H86O4
i-CaH7OCH2COO-	81-82		16.5	240-241			74.20	73.88	9.35	9.03			C24H25O4
n-C4HgOCH2COO-	61.5-63	111	15.6	240	63.0	29	74.58	74.66	9.51	9.43			$C_{25}H_{38}O_4$
CH2OCH2CH2COO-	110-112	93 = 6*	17.0	239-242	79.6	25	73.76	73.83	9.15	9.06			C23H84O4
C2H6OCH2CH2COO-	53-55	102	16,6	240	74.7	29	74,20	74.40	9.35	9.12			C24H86O4
i-C3H7OCH2CH2COO-	62-63.5	88	16.8	241	76.0	29	74.58	74.78	9.51	9.38			C25H28O4
CH ₂ OCH ₂ CH ₂ COO-	55-57	$123 \pm 4*$	17.1	240-241	88.4	26	74.20	74.03	9.35	9.19			C24H36O4
CH2CH2CHCOO-	149-151	<100	16.7	240241	84.4	26	77.27	77.28	9.30	9.00			C23H22O
CH2CH2CH2CH-COO-	110-111	<100	16.5	240-241	80.7	24	77.79	77.83	9.25	9.11			C24H34O3
CH2CH2CH2CHCOO-	116-117	<100	16.7	240-241	76.6	26	74.57	74.46	8.82	8.68			C24H24O4
CH=CHCH=CC00	-221 °	<100	29.5	244-246	170.5	27	75.13	74.87	7.89	8.42			C:4H80O4
CH1COOCH2COO-	110-112°	ca. 100	16.5	240-241	65.3	27	73.76	73.83	9.15	9.06			C23H82O5
CH2COOCH2CH2COO-	112°	ca. 100	16.8	240-241	62.8	27	71.64	71.64	8.86	8.52			C24H84O8
CH ₂ SCH ₂ COO-	100-101	$133 \pm 3*$	17.3	239 - 240	82.5	26	70.17	70.19	8.57	8.59	8.52	8.77	$C_{22}H_{22}O_8S$
C2H5SCH2COO-	99-100	123 = 5*	17.1	240 - 241	84.4	25	70.73	70.68	8.77	8.64	8.21	8.18	C28H84O2S
n-C2H7SCH2COO-	69.5-70.5	121 = 6*	17.4	240	85	26	71.24	71.10	8.97	8.98	7.91	8.02	C24H26O3S
i-C3H7SCH2COO-	75-76	111 = 2*	17.2	240242	87.5	29	71.24	71.30	8.97	8.87	7.91	7.84	C24H36O3S
C6H5SCH2COO-	120.5 - 122	99	22.7	240	76.1	29	73.93	73.29	7.81	7.54	7.31	7.56	C27H24O2S
C6H5CH2SCH2COO-	80.5-82	46	18.2	239 - 241	76.4	26	74.29	74.37	8.03	8.01	7.09	7.20	C28H28O2S
CH ₈ SCH ₂ CH ₂ COO-	85-86	<100	16.9	239 - 241	84,4	29	70.73	70.76	8.77	8.67			C23H34O3S
CH ₈ CH(SCH ₈)COO-	125 - 126	<100	17.7	240-241	76.7	24	70.73	70.70	8.77	8.81			C28H84O8S
CH3CH(SC2H5)COO-	84-86	81	17.3	240 - 242	87.1	29	71.24	71.18	8.97	8.86	7.91	7.77	C24H86O2S
CH ₈ SCH ₂ CH ₂ CH ₂ COO-	64-66	75	16,8	240-241	86.0	27	71.24	70.97		8.92	7.91	7.90	C24H36O3S
CH2CH2CH(SCH2)COO-	118-119.5	27	17.9	241	72.8	29	71.24	71,14	8.97	9.02	7.91	7.63	$C_{24}H_{16}O_8S$

^{*a*} Activity is measured by the effect on growth of seminal vesicles and prostate of castrated male rats. Daily subcutaneous injection for 3 days sacrificed 24 hours after last injection. Estimated activity based on testosterone propionate as 100%. All results based on 3 rats except starred results which indicate 10 rats were used. ^{*b*} All run in 1% w/v solution in U. S. P. grain alcohol except the rotation of the furoate ester which was run in the same concentration of C. P. chloroform. ^{*c*} Uncorrected m. p. ^{*d*} Vield varied from 30 to 90%.

The solution was passed through a column of activated alumina (Aluminum Ore Co., minus 80 mesh). The absorbed product was then washed off the alumina with 1:1 Skellysolve A-ether. This process of adsorption and elution was repeated several times giving 0.5 g. of a white crystalline mass. This was recrystallized from Skellysolve A to give one fraction, m. p. $61.5-63^{\circ}$ (0.32 g.), a second fraction, m. p. $58-59^{\circ}$ and a residual sirup. Analysis of the first fraction showed it to be pure ester.

Testosterone Ethylmercaptoacetate.—A mixture of 0.75 g. of testosterone in 1 cc. of ethylmercaptoacetic anhydride was heated for two hours on a steam-bath. The reaction mixture was poured into water and allowed to stand overnight. It was then extracted with ether and the extract washed with dilute sodium carbonate solution. The ether was diluted with three parts of Skellysolve A and the solution passed through a column of activated alumina. The adsorbed ester was eluted from the alumina with 1:1 ether-Skellysolve. This process was repeated three times. The solvent was evaporated, almost to dryness, diluted with a little Skellysolve A, and the product allowed to crystallize. These crystals were filtered off and recrystallized from Skellysolve B; yield 0.80 g., m. p. 99-100°.

Summary

A series of new alkoxy and alkylmercapto acids and their acid chlorides have been prepared. These have been used in the preparation of the corresponding testosterone esters.

RENSSELAER, N. Y.

RECEIVED MARCH 16, 1949